
Stacks

Stacks 2

The Stack ADT

Set of objects in which the location an
item is inserted and deleted is pre-
specified

Stacks

! Insert in order

! Delete most recent item inserted

! LIFO - last in, first out

Stacks 3

The Stack ADT

Examples of stacks

! Cafeteria tray dispenser

! Coin dispenser in your car

! Balancing braces

! Recognizing strings in a language

! Evaluating postfix expressions

! Converting infix to postfix

! Undo sequence in a text editor

! Saving local variables when one function calls
another, and this one calls another, and so on.

Stacks 4

The Stack ADT

Main stack operations:

! push(object o): inserts element o

! pop(): removes the last inserted element

! top(): returns a reference to the last inserted
element without removing it

Auxiliary stack operations:

! size(): returns the number of elements stored

! isEmpty(): returns true if the stack is empty, else
false

Stacks 5

Exceptions

Attempting the
execution of an
operation of ADT may
sometimes cause an
error condition, called
an exception

Exceptions are said to
be “thrown” by an
operation that cannot
be executed

In the Stack ADT,
operations pop and
top cannot be
performed if the
stack is empty

Attempting the
execution of pop or
top on an empty
stack throws an
EmptyStackException

Stacks 6

C++ Run-time Stack

The C++ run-time system
keeps track of the chain of
active functions with a stack

When a function is called, the
run-time system pushes on the
stack a frame containing
! Local variables and return value

! Program counter, keeping track of
the statement being executed

When a function returns, its
frame is popped from the stack
and control is passed to the
method on top of the stack

main() {

int i = 5;

foo(i);

}

foo(int j) {

int k;

k = j+1;

bar(k);

}

bar(int m) {

func call

}

bar

 PC = 1
 m = 6

foo

 PC = 3
 j = 5

 k = 6

main

 PC = 2
 i = 5

Stacks 7

C++ Run-time Stack
main() {

int i = 5;

foo(i);

}

foo(int j) {

int k;

k = j+1;

bar(k);

}

bar(int m) {

func call

}

bar

 PC = 1
 m = 6

foo

 PC = 3
 j = 5

 k = 6

main

 PC = 2
 i = 5

The C++ run-time system
keeps track of the chain of
active functions with a stack

When a function is called, the
run-time system pushes on the
stack a frame containing
! Local variables and return value

! Program counter, keeping track of
the statement being executed

When a function returns, its
frame is popped from the stack
and control is passed to the
method on top of the stack

Stacks 8

Array-based Stack

A simple way of implementing the Stack ADT
uses an array

We push (add) elements from left to right

A variable keeps track of the index of the
last item pushed

0 1 2 3 4 5 6 7

Top = -1Top = 0Top = 1Top = 2Top = 3

Stacks 9

Array-based Stack

We pop (remove) elements from right to left

0 1 2 3 4 5 6 7

Top = -1Top = 0Top = 1Top = 2Top = 3

Stacks 10

Stack Data Structure

class Stack {
private:

objectType stack[MAX_STACK_SIZE];
int top;

public:
functions for stack manipulation
constructor sets top to -1

};

Stacks 11

Stack Implementation- Push

The array storing the stack elements may
become full

A push operation will then throw a
FullStackException
! Limitation of the array-based implementation

void push (objectType o) {
if (top + 1 == MAX_STACK_SIZE)

throw FullStackException
else

S[++top] = o;

Stacks 12

Stack Implementation- Pop

In class exercise - write pop and getTop
functions
! Array may be empty when pop

! getTop will return top item/object

! Operations will may throw an EmptyStackException

objectType getTop () {
if (isEmpty ())

throw EmptyStackException
else

top--;

objectType getTop () {
if (isEmpty ())

throw EmptyStackException
else

return S[top];

Stacks 13

Performance and Limitations

Performance

! Let n be the number of elements in the stack

! The space used is O(n)

! Each operation runs in time O(1)

Limitations

! The maximum size of the stack must be defined a
priori , and cannot be changed

! Trying to push a new element into a full stack
causes an implementation-specific exception

Stacks 14

Stack Application - Infix to
Postfix Conversion

Stack can be used to convert infix
mathematical expressions to postfix
mathematical expressions

Stacks 15

Stack Application - Infix to
Postfix Conversion

Algorithm
! Process infix expression one item at a time

! Operand - write to output

! Operator - pop and write to output until an entry
of lower priority is found (don’t pop parentheses)
then push

! Left parentheses - push

! Right parentheses - pop stack and write to output
until left parentheses is found

! When done processing expression, pop remaining
items and write to output

! NOTE - parentheses are not written to the output
Stacks 16

Stack Application - Infix to
Postfix Conversion

a + b * c - (d * e + f) * g

Rule Stack Output

a

a + b * c - (d * e + f) * g

Operand -
write to output

Stack

+

Output

a
a

a + b * c - (d * e + f) * g

Operator - pop
and write to

output until an
entry of lower

priority is found
(don’t pop

parentheses)
then push

Stack

+
+

Output

a
a
ab

a + b * c - (d * e + f) * g

Operand - write
to output

Stack

+
+
+*

Output

a
a
ab
ab

a + b * c - (d * e + f) * g

Operator - pop
and write to

output until an
entry of lower

priority is found
(don’t pop

parentheses)
then push

Stack

+
+
+*
+*

Output

a
a
ab
ab
abc

a + b * c - (d * e + f) * g

Operand - write
to output

Stack

+
+
+*
+*
-

Output

a
a
ab
ab
abc

abc*+

a + b * c - (d * e + f) * g

Operator - pop
and write to

output until an
entry of lower

priority is found
(don’t pop

parentheses)
then push

Stack

+
+
+*
+*
-
-(

Output

a
a
ab
ab
abc

abc*+
abc*+

a + b * c - (d * e + f) * g

Left parentheses
- push

Stack

+
+
+*
+*
-
-(
-(

Output

a
a
ab
ab
abc

abc*+
abc*+
abc*+d

a + b * c - (d * e + f) * g

Operand - write
to output

Stack

+
+
+*
+*
-
-(
-(
-(*

Output

a
a
ab
ab
abc

abc*+
abc*+
abc*+d
abc*+d

a + b * c - (d * e + f) * g

Operator - pop
and write to

output until an
entry of lower

priority is found
(don’t pop

parentheses)
then push

Stack

+
+
+*
+*
-
-(
-(
-(*
-(*

Output

a
a
ab
ab
abc

abc*+
abc*+
abc*+d
abc*+d
abc*+de

a + b * c - (d * e + f) * g

Operand - write
to output

Stacks 17

Stack Application - Infix to
Postfix Conversion

Stack

-(+
Output

abc*+de*

a + b * c - (d * e + f) * g

Operator - pop
and write to

output until an
entry of lower

priority is found
(don’t pop

parentheses)
then push

Rule Stack

-(+
-(+

Output

abc*+de*
abc*+de*f

a + b * c - (d * e + f) * g

Operand - write
to output

Stack

-(+
-(+
-

Output

abc*+de*
abc*+de*f

abc*+de*f+

a + b * c - (d * e + f) * g

Right
parentheses -
pop stack and
write to output

until left
parentheses is

found

Stack

-(+
-(+
-
-*

Output

abc*+de*
abc*+de*f

abc*+de*f+
abc*+de*f+

a + b * c - (d * e + f) * g

Operator - pop
and write to

output until an
entry of lower

priority is found
(don’t pop

parentheses)
then push

Stack

-(+
-(+
-
-*
-*

Output

abc*+de*
abc*+de*f

abc*+de*f+
abc*+de*f+
abc*+de*f+g

a + b * c - (d * e + f) * g

Operand - write
to output

Stack

-(+
-(+
-
-*
-*

Output

abc*+de*
abc*+de*f

abc*+de*f+
abc*+de*f+
abc*+de*f+g

abc*+de*f+g*-

a + b * c - (d * e + f) * g

When done
processing

expression, pop
remaining items

and write to
output

Stacks 18

Stack Application - Evaluating
Postfix Expressions

You may assume I give you a valid
postfix expression

Algorithm

! Process postfix expression one item at a
time

! Operand - push

! Operator - pop 2 times, evaluate
expression (second_pop operator
first_pop), push result onto stack

Stacks 19

Stack Application - Evaluating
Postfix Expressions

6 * (5 + ((2 + 3) * 8) + 3) => 6 5 2 3 + 8 * + 3 + *

Current Symbol Stack

6 6

5 6 5

2 6 5 2

3 6 5 2 3

+ 6 5 5

Stacks 20

Stack Application - Evaluating
Postfix Expressions

6 * (5 + ((2 + 3) * 8) + 3) => 6 5 2 3 + 8 * + 3 + *

Current Symbol Stack

8 6 5 5 8

* 6 5 40

+ 6 45

3 6 45 3

+ 6 48

* 288

Stacks 21

Other Stack Applications

Balanced brace problem

! Push every left brace

! When you find a right brace, pop and
compare. If no matching left brace then
error

! If stack doesn’t end up empty then error

Path problem

! Take a path and return in the reverse
order

Stacks 22

Growable Array-based Stack

In a push operation, when
the array is full, instead of
throwing an exception, we
can replace the array with
a larger one

How large should the new
array be?
! incremental strategy:

increase the size by a
constant c

! doubling strategy: double
the size

Algorithm push(o)

if t = S.length ! 1 then

A " new array of

size …

for i " 0 to t do

 A[i] " S[i]

 S " A

t " t + 1

S[t] " o

Stacks 23

Linked List Based Stack

Using a linked list can remove the size
restrictions of an array

Head will be referred to as the top

Top initially points to NULL

All operations and done at the top

! Push = Insert at head/top

! Pop = Remove from head/top

Stacks 24

Linked List Based Stack

bool isEmpty () {
if (top == NULL)

return true;
else

return false;
}

void push (Node* newTop) {
newTop->next = top;
top = newTop;

}

Node* getTop () {
return top;

}

Stacks 25

Linked List Based Stack
Operations

Top X

Stacks 26

Linked List Based Stack
Operations

Top

X

Stacks 27

Linked List Based Stack
Operations

Top

X

Stacks 28

Linked List Based Stack
Operations

Top

X

Stacks 29

Linked List Based Stack
Operations

Top

X

Stacks 30

Linked List Based Stack
Operations

Top

X

Stacks 31

Linked List Based Stack
Operations

Top

X

Stacks 32

Linked List Based Stack

In class exercise - Write the pop
function

! Think about memory leaks

" Just delete the node, don’t expect user to

! Use getTop () if you want to use the node

! Use pop if you just want to remove the
node

Stacks 33

Linked List Based Stack

void pop () {
if (isEmpty ())

throw StackEmptyException
else

Node* temp = top;
top = temp->next;
delete temp;

}

Stacks 34

Stacks

Often the array implementation is used
since the stack usually never grows
very large even when there is a large
number of operations

Stacks 35

Stack Big Oh Runtimes

Array based

! Push

" O(1)

! Pop

" O(1)

! isEmpty

" O(1)

! getTop

" O(1)

Linked list based
! Push

" O(1)

! Pop
" O(1)

! isEmpty
" O(1)

! getTop
" O(1)

