Stacks

=%

The Stack ADT

#Set of objects in which the location an
item is inserted and deleted is pre-
specified

#Stacks
= Insert in order
= Delete most recent item inserted
= LIFO - last in, first out

Stacks

The Stack ADT

Examples of stacks
= Cafeteria tray dispenser
= Coin dispenser in your car
= Balancing braces
= Recognizing strings in a language
= Evaluating postfix expressions
= Converting infix to postfix
= Undo sequence in a text editor
= Saving local variables when one function calls

another, and this one calls another, and so on.

Stacks

The Stack ADT

Main stack operations:
= push(object 0): inserts element o
= pop(): removes the last inserted element
= top(): returns a reference to the last inserted
element without removing it
Auxiliary stack operations:
= Size(): returns the number of elements stored

= iSEmpty(): returns true if the stack is empty, else
false

Stacks 4

Exceptions

Attempting the
execution of an
operation of ADT may
sometimes cause an
error condition, called
an exception

Exceptions are said to
be “thrown” by an
operation that cannot
be executed

Stacks

In the Stack ADT,
operations pop and
top cannot be
performed if the
stack is empty

Attempting the
execution of pop or
top on an empty
stack throws an
EmptyStackException

5

C++ Run-time Stack

The C++ run-time system m‘?i”Q_{ _
keeps track of the chain of inti =5;
active functions with a stack foo(i);

When a function is called, the }
run-time system pushes on the foo(int) {
stack a frame containing int k:

= Local variables and return value k= j:|-1-
= Program counter, keeping track of h
the statement being executed bar(k);

When a function returns, its }
frame is popped from the stack par(int m) {
and control is passed to the func call
method on top of the stack)

Stacks

bar
PC=1
m=6

foo

PC =3
=5
k=6

main
PC=2

C++ Run-time Stack

The C++ run-time system m‘?i”Q_{ _
keeps track of the chain of inti =5;
active functions with a stack foo(i);

When a function is called, the }
run-time system pushes on the foo(int) {
stack a frame containing int k-

= Local variables and return value k= j:|-1-
= Program counter, keeping track of a
the statement being executed bar(k);

When a function returns, its }
frame is popped from the stack par(int m) {
and control is passed to the func call
method on top of the stack)

Stacks

bar
PC=1
m=6

foo
PC =3
=
k=6

main
PC=2

Array-based Stack

A simple way of implementing the Stack ADT

uses an array

4 We push (add) elements from left to right
A variable keeps track of the index of the

last item pushed
Top =3

N
o 1 2 3 4

5 6 7

Stacks

Array-based Stack

We pop (remove) elements from right to left

Top =3

Stacks 9

Stack Data Structure

class Stack {

private:
objectType stack[MAX_STACK_SIZE];
int top;

public:
functions for stack manipulation
constructor sets top to -1

)

Stacks 10

Stack Implementation- Push

The array storing the stack elements may
become full

A push operation will then throw a
FullStackException
= Limitation of the array-based implementation

void push (objectType o0) {
if (top + 1 == MAX_STACK_SIZE)
throw FullStackException
else
S[++top] = o;

Stacks 11

Stack Implementation- Pop

In class exercise - write pop and getTop
functions
= Array may be empty when pop
= getTop will return top item/object
= Operations will mav throw an EmptvStackException

Performance and Limitations

Performance
= Let n be the number of elements in the stack
= The space used is O(n)
= Each operation runs in time O(1)

Limitations

= The maximum size of the stack must be defined a
priori , and cannot be changed

= Trying to push a new element into a full stack
causes an implementation-specific exception

Stacks 13

Stack Application - Infix to
Postfix Conversion

#Stack can be used to convert infix
mathematical expressions to postfix
mathematical expressions

Stacks

14

Stack Application - Infix to
Postfix Conversion

Algorithm

= Process infix expression one item at a time

= Operand - write to output

= Operator - pop and write to output until an entry
of lower priority is found (don’t pop parentheses)
then push

» Left parentheses - push

= Right parentheses - pop stack and write to output
until left parentheses is found

= When done processing expression, pop remaining
items and write to output

= NOTE - parenthesesStaEe not written to the outpult5
acks

Stack Application - Infix to
Postfix Conversion

a+b*c-(d*e+f)*g

Rule Stack Output
Operand - write a
to output N @
+ ab
+* ab
+* abc
- abc*+
-(abc*+
-(abc*+d
-(* abc*+d
-(* abc*+de

Stacks

16

Stack Application - Infix to
Postfix Conversion

a+b*c-(d*e+f)*g

Rule Stack Output
-(+ abc*+de*
When dc_me -E+ abc*+de*f
proce;smg - abc*+de*f+
expression, pop i abc*+de*f+
remaining items -k abc*+de*f+g
and write to abc*+de*f+g*-
output

Stacks 17

Stack Application - Evaluating
Postfix Expressions

#You may assume I give you a valid
postfix expression
Algorithm
= Process postfix expression one item at a
time
= Operand - push

= Operator - pop 2 times, evaluate
expression (second_pop operator
first_pop), push result onto stack

Stacks 18

Stack Application - Evaluating
Postfix Expressions

6*(5+((2+3)*8)+3)=>6523+8*+3+*

Current Symbol Stack
6 6
5 65
2 652
3 6523
+ 655

Stacks 19

Stack Application - Evaluating
Postfix Expressions

6*(5+((2+3)*8)+3)=>6523+8*+3+*

Current Symbol Stack
8 6558
* 6540
+ 6 45
3 6453
+ 6 48
%

288

Stacks 20

Other Stack Applications

#Balanced brace problem
= Push every left brace
= When you find a right brace, pop and
compare. If no matching left brace then
error
= If stack doesn’t end up empty then error
#Path problem

» Take a path and return in the reverse
order

Stacks 21

Growable Array-based Stack

#1n a push operation, when Algorithm push(o)
the array is full, instead of | if; = 5. 1engrh - 1 then
throwing an exception, we

\ A < new array of
can replace the array with

size ...

a larger one for i < 0 to 7 do
How large should the new Ali] < S[i]
array be? S<A
= incremental strategy: r—it
increase the size by a Slt] <o
constant ¢
= doubling strategy: double
the size

Stacks 22

Linked List Based Stack

#Using a linked list can remove the size
restrictions of an array

#Head will be referred to as the top
#Top initially points to NULL

All operations and done at the top
» Push = Insert at head/top
= Pop = Remove from head/top

Stacks 23

Linked List Based Stack

bool isEmpty () {
if (top == NULL)
return true;

else

return false; Node* getTop () {
2 return top;

}

void push (Node* newTop) {
newTop->next = top,
top = newTop;

Stacks 24

Linked List Based Stack
Operations

Top — X

Stacks 25

Linked List Based Stack
Operations

Top

\

Stacks

26

Linked List Based Stack
Operations

Top

N

Stacks 27

Linked List Based Stack
Operations

Top

Stacks

28

Linked List Based Stack
Operations

Top

T

Stacks 29

Linked List Based Stack
Operations

Top

\

Stacks 30

Linked List Based Stack
Operations

Top

\

Stacks 31

Linked List Based Stack

#1n class exercise - Write the pop
function
= Think about memory leaks
+ Just delete the node, don't expect user to
= Use getTop () if you want to use the node

= Use pop if you just want to remove the
node

Stacks 32

Linked List Based Stack

Stacks 33

Stacks

#Often the array implementation is used
since the stack usually never grows
very large even when there is a large
number of operations

Stacks 34

Stack Big Oh Runtimes

Array based # Linked list based
= Push = Push
= Pop = Pop
= iSEmpty = ISEmpty
= getTop

= getTop

Stacks 35

