Ovde rešavamo zadatke iz MML Book
Koristićemo R i matlib biblioteku.
library(matlib)
Tekst je u formatu Rmd (R markdown) i može se knit aplikacijom pretvoriti u html (ili pdf) dokument.
Za \(k = 0, 1, \ldots, n-1,\; k \in \overline{k}\). Skup \(\mathbb{Z}_n = \{ \overline{0}, \overline{1}, \ldots, \overline{n-1} \}\) predstavlja ostatke pri deljenju sa \(n\). Operacije \(\oplus\) i \(\otimes\) su sabiranje i množenje po modulu \(n\).
#########
# 2.2 #
#########
# b
matrix(1:4,ncol=1) %*% matrix(1:4,nrow=1) %% 5
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 2 4 1 3
## [3,] 3 1 4 2
## [4,] 4 3 2 1
Očigledno je zatvorena operacija, asocijativnost i komutativnost
slede, kao i kod \(\oplus\) iz
asocijativnosti i komutativnosti množenja u skupu \(\mathbb{Z}\). Isto, neutralni element za
množenje je \(\overline{1}\).
Iz
tablice se vidi da svaki element ima inverzni: \(1^{-1} = 1, 2^{-1} = 3, 3^{-1} = 2, 4^{-1} =
4\).
U skupu \(\mathbb{Z}_8\) važi \(\overline{4} \otimes \overline{2} = \overline{4 \cdot 2} = \overline{8} = \overline{0}\), tako da \(( \mathbb{Z}_8 \backslash \{ 0 \}, \otimes )\) nije ni grupoid.
\(( \mathbb{Z}_n \backslash \{ 0 \},
\otimes )\) je Abelova grupa \(\Leftrightarrow\) n je prost broj.
Dokaz:
Komutativnost, asocijativnost i neutralnost \(\overline{1}\) za \(\otimes\) proizilaze iz osobina grupoida
\(( \mathbb{Z}\backslash \{ 0 \}, \cdot
)\).
Ako \(n\) nije prost
broj, \(n = m \ k\), onda \(( \mathbb{Z}_n \backslash \{ 0 \}, \otimes
)\) nije grupoid jer \(\overline{m}
\otimes \overline{k} = \overline{n} = \overline{0}\).
Neka je
\(n\) prost broj i neka \(\overline{m} \in \mathbb{Z}_n \backslash \{ 0
\}\) i neka \(m \in \{ 0, 1, \ldots, n
- 1 \}\). Brojevi \(n\) i \(m\) su uzajamno prosti, na osnovu Bezuove
teoreme (Bézout’s identity) postoje \(x, y \in
\mathbb{Z}\) tako da \(x \ n + y \ m =
1\). Onda je \(\overline{y} =
\overline{m}^{-1}\), jer \[
\overline{y} \otimes \overline{m} = \overline{y \ m} = \overline{- x \ n
+ 1} = \overline{1} = \overline{m \ y} = \overline{m} \otimes
\overline{y}.\]
Ako u grupoidu sa neutralnim elementom za podskup važi zatvorenost
operacije i nalaženja inverznog elemeta, onda je taj podskup u odnosu na
restrikciju operacije grupa. Zatvorenost operacije: \[\begin{bmatrix} 1 & x_{1} & y_{1}\\
0 & 1 & z_{1}\\
0 & 0 & 1 \end{bmatrix}
\begin{bmatrix} 1 & x_{2} & y_{2}\\
0 & 1 & z_{2}\\
0 & 0 & 1 \end{bmatrix} =
\begin{bmatrix} 1 & x_{1} + x_{2} & x_{1} \ z_{2} + y_{1} +
y_{2}\\
0 & 1 & z_{1}+z_{2}\\
0 & 0 & 1 \end{bmatrix}\]
Zatvorenost traženja inverznog elementa:
\[\begin{bmatrix} 1 & x & y\\
0 & 1 & z\\
0 & 0 & 1 \end{bmatrix}
\begin{bmatrix} 1 & -x & x \ z - y \\
0 & 1 & -z \\
0 & 0 & 1 \end{bmatrix} =
\begin{bmatrix} 1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\\end{bmatrix} =
\begin{bmatrix} 1 & -x & x \ z - y \\
0 & 1 & -z \\
0 & 0 & 1 \end{bmatrix}
\begin{bmatrix} 1 & x & y\\
0 & 1 & z\\
0 & 0 & 1 \end{bmatrix}\] Komutativnost
ne važi
Pomnožiti matrice, ako je moguće.
#########
# 2.4 #
#########
# a
# Ne mogu se pomnožiti
# b
A = matrix(c(1:9), ncol = 3, byrow = T);
B = matrix(c(1,1,0,0,1,1,1,0,1), ncol = 3, byrow = T); B
## [,1] [,2] [,3]
## [1,] 1 1 0
## [2,] 0 1 1
## [3,] 1 0 1
A%*%B
## [,1] [,2] [,3]
## [1,] 4 3 5
## [2,] 10 9 11
## [3,] 16 15 17
# c
B%*%A
## [,1] [,2] [,3]
## [1,] 5 7 9
## [2,] 11 13 15
## [3,] 8 10 12
# d
A = matrix(c(1,2,1,2,4,1,-1,-4), ncol = 4, byrow = T); A
## [,1] [,2] [,3] [,4]
## [1,] 1 2 1 2
## [2,] 4 1 -1 -4
B = matrix(c(0,3,1,-1,2,1,5,2), ncol=2, byrow = T); B
## [,1] [,2]
## [1,] 0 3
## [2,] 1 -1
## [3,] 2 1
## [4,] 5 2
A%*%B
## [,1] [,2]
## [1,] 14 6
## [2,] -21 2
# e
B%*%A
## [,1] [,2] [,3] [,4]
## [1,] 12 3 -3 -12
## [2,] -3 1 2 6
## [3,] 6 5 1 0
## [4,] 13 12 3 2
#########
# 2.5 #
#########
# a
A = matrix(c(1,2,2,5,1,5,-1,2,-1,-7,1,-4,-1,-5,3,2),ncol=4); A
## [,1] [,2] [,3] [,4]
## [1,] 1 1 -1 -1
## [2,] 2 5 -7 -5
## [3,] 2 -1 1 3
## [4,] 5 2 -4 2
b = c(1,-2,4,6); b
## [1] 1 -2 4 6
gaussianElimination(A,b)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 0.6666667 1.83333333
## [2,] 0 1 0 -2.6666667 -0.08333333
## [3,] 0 0 1 -1.0000000 0.75000000
## [4,] 0 0 0 0.0000000 -0.50000000
# Matrica $A$ i proširena matrica $A|b$ nemaju isti rang, sistem je nemoguć
# b
A = matrix(c(1,1,2,-1,-1,1,-1,2,0,0,0,0,0,-3,1,-2,1,0,-1,-1), ncol = 5); A
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 -1 0 0 1
## [2,] 1 1 0 -3 0
## [3,] 2 -1 0 1 -1
## [4,] -1 2 0 -2 -1
b = c(3,6,5,-1); b
## [1] 3 6 5 -1
gaussianElimination(A,b) -> Ab1 ; Ab1
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 0 0 -1 3
## [2,] 0 1 0 0 -2 0
## [3,] 0 0 0 1 -1 -1
## [4,] 0 0 0 0 0 0
Ab2=rbind(Ab1[1:2,],-(1:6==3),Ab1[3,],-(1:6==5)); Ab2
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 0 0 -1 3
## [2,] 0 1 0 0 -2 0
## [3,] 0 0 -1 0 0 0
## [4,] 0 0 0 1 -1 -1
## [5,] 0 0 0 0 -1 0
Rešenje sistema su svi vektori \({\boldsymbol x} = [3,0,0,-1,0]^T + x_3 [0,0,1,0,0]^T + x_5 [ 1,2,0,1,1 ]^T\), \(x_3, x_5 \in \mathbb{R}\).
#########
# 2.6 #
#########
A=matrix(c(0,1,0,0,1,0,0,0,0,1,1,0,0,1,0,0,0,1), ncol = 6, byrow = TRUE); A
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0 1 0 0 1 0
## [2,] 0 0 0 1 1 0
## [3,] 0 1 0 0 0 1
b=c(2,-1,2); b
## [1] 2 -1 2
gaussianElimination(A,b) -> Ab1 ; Ab1
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0 1 0 0 0 1 2
## [2,] 0 0 0 1 0 1 -1
## [3,] 0 0 0 0 1 -1 0
Ab2=rbind(-(1:7==1),Ab1[1,],-(1:7==3),Ab1[2:3,],-(1:7==6)); Ab2
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] -1 0 0 0 0 0 0
## [2,] 0 1 0 0 0 1 2
## [3,] 0 0 -1 0 0 0 0
## [4,] 0 0 0 1 0 1 -1
## [5,] 0 0 0 0 1 -1 0
## [6,] 0 0 0 0 0 -1 0
Rešenje sistema su svi vektori \({\boldsymbol x} = [0,2,0,-1,0,0]^T + x_1 [1,0,0,0,0,0]^T + x_3 [0,0,1,0,0,0]^T + x_6 [0,1,0,1,-1,-1]^T\), \(x_1, x_3, x_6 \in \mathbb{R}\).
#########
# 2.7 #
#########
A = matrix(c(6,4,3,6,0,9,0,8,0), ncol = 3, byrow = TRUE); A
## [,1] [,2] [,3]
## [1,] 6 4 3
## [2,] 6 0 9
## [3,] 0 8 0
A = A - 12 * diag(3); A
## [,1] [,2] [,3]
## [1,] -6 4 3
## [2,] 6 -12 9
## [3,] 0 8 -12
A = rbind(A,c(1,1,1)); A
## [,1] [,2] [,3]
## [1,] -6 4 3
## [2,] 6 -12 9
## [3,] 0 8 -12
## [4,] 1 1 1
b = c(0,0,0,1); b
## [1] 0 0 0 1
gaussianElimination(A,b) -> Ab1 ; Ab1
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0.375
## [2,] 0 1 0 0.375
## [3,] 0 0 1 0.250
## [4,] 0 0 0 0.000
Rešenje: \({\boldsymbol x} = [0.375,0.375,0.250]^T = [3/8, 3/8, 2/8]^T\).
#########
# 2.8 #
#########
# a
A = matrix(c(2,3,4,3,4,5,4,5,6), ncol = 3, byrow = T); A
## [,1] [,2] [,3]
## [1,] 2 3 4
## [2,] 3 4 5
## [3,] 4 5 6
A = cbind(A,diag(3)); A
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 2 3 4 1 0 0
## [2,] 3 4 5 0 1 0
## [3,] 4 5 6 0 0 1
gaussianElimination(A) -> A1; A1
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 -1 0 -5 4
## [2,] 0 1 2 0 4 -3
## [3,] 0 0 0 1 -2 1
# Nema inverznu, rang matrice je 2
# b
A = matrix(c(1,0,1,0,0,1,1,0,1,1,0,1,1,1,1,0), ncol = 4, byrow = T); A
## [,1] [,2] [,3] [,4]
## [1,] 1 0 1 0
## [2,] 0 1 1 0
## [3,] 1 1 0 1
## [4,] 1 1 1 0
A0 = cbind(A,diag(4)); A0
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 1 0 1 0 1 0 0 0
## [2,] 0 1 1 0 0 1 0 0
## [3,] 1 1 0 1 0 0 1 0
## [4,] 1 1 1 0 0 0 0 1
gaussianElimination(A0) -> A1; A1
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 1 0 0 0 0 -1 0 1
## [2,] 0 1 0 0 -1 0 0 1
## [3,] 0 0 1 0 1 1 0 -1
## [4,] 0 0 0 1 1 1 1 -2
A1 = A1[,5:8]; A1
## [,1] [,2] [,3] [,4]
## [1,] 0 -1 0 1
## [2,] -1 0 0 1
## [3,] 1 1 0 -1
## [4,] 1 1 1 -2
A %*% A1
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] 0 1 0 0
## [3,] 0 0 1 0
## [4,] 0 0 0 1
library(xtable)
print(xtable(A1, digits = 0), floating=FALSE, tabular.environment="bmatrix", hline.after=NULL, include.rownames=FALSE, include.colnames=FALSE)
## % latex table generated in R 4.5.0 by xtable 1.8-4 package
## % Thu Dec 4 21:29:39 2025
## \begin{bmatrix}{rrrr}
## 0 & -1 & 0 & 1 \\
## -1 & 0 & 0 & 1 \\
## 1 & 1 & 0 & -1 \\
## 1 & 1 & 1 & -2 \\
## \end{bmatrix}
Rešenje: \(A^{-1} = \begin{bmatrix} 0 & -1 & 0 & 1\\ -1 & 0 & 0 & 1\\ 1 & 1 & 0 & -1\\ 1 & 1 & 1 & -2 \end{bmatrix}\).
#########
# 2.10 #
#########
# a
A = matrix(c(2,-1,3,1,1,-2,3,-3,8), ncol = 3); A
## [,1] [,2] [,3]
## [1,] 2 1 3
## [2,] -1 1 -3
## [3,] 3 -2 8
gaussianElimination(A)
## [,1] [,2] [,3]
## [1,] 1 0 2
## [2,] 0 1 -1
## [3,] 0 0 0
# b
A = matrix(c(1,2,1,0,0,1,1,0,1,1,1,0,0,1,1), ncol = 3); A
## [,1] [,2] [,3]
## [1,] 1 1 1
## [2,] 2 1 0
## [3,] 1 0 0
## [4,] 0 1 1
## [5,] 0 1 1
gaussianElimination(A)
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
## [4,] 0 0 0
## [5,] 0 0 0
#########
# 2.11 #
#########
A = matrix(c(1,1,1,1,2,3,2,-1,1), ncol = 3); A
## [,1] [,2] [,3]
## [1,] 1 1 2
## [2,] 1 2 -1
## [3,] 1 3 1
y = c(1,-2,5)
gaussianElimination(A,y)->A1; A1
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 -6
## [2,] 0 1 0 3
## [3,] 0 0 1 2
\({\boldsymbol y} = -6 {\boldsymbol x}_1 + 3 {\boldsymbol x}_2 + 2 {\boldsymbol x}_3\).
#########
# 2.12 #
#########
A = matrix(c(1,1,-3,1,2,-1,0,-1,-1,1,-1,1), ncol = 3); A
## [,1] [,2] [,3]
## [1,] 1 2 -1
## [2,] 1 -1 1
## [3,] -3 0 -1
## [4,] 1 -1 1
gaussianElimination(A)
## [,1] [,2] [,3]
## [1,] 1 0 0.3333333
## [2,] 0 1 -0.6666667
## [3,] 0 0 0.0000000
## [4,] 0 0 0.0000000
B = matrix(c(-1,-2,2,1,2,-2,0,0,-3,6,-2,-1), ncol = 3); B
## [,1] [,2] [,3]
## [1,] -1 2 -3
## [2,] -2 -2 6
## [3,] 2 0 -2
## [4,] 1 0 -1
gaussianElimination(B)
## [,1] [,2] [,3]
## [1,] 1 0 -1
## [2,] 0 1 -2
## [3,] 0 0 0
## [4,] 0 0 0
C = cbind( A[,1:2], -B[,1:2]); C
## [,1] [,2] [,3] [,4]
## [1,] 1 2 1 -2
## [2,] 1 -1 2 2
## [3,] -3 0 -2 0
## [4,] 1 -1 -1 0
gaussianElimination(C) -> C1; C1
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 -0.4444444
## [2,] 0 1 0 -1.1111111
## [3,] 0 0 1 0.6666667
## [4,] 0 0 0 0.0000000
C2 = rbind(C1[1:3,],-(1:4==4))
D=matrix(round(-9*C2[,4]),ncol = 1); D
## [,1]
## [1,] 4
## [2,] 10
## [3,] -6
## [4,] 9
C %*% D
## [,1]
## [1,] 0
## [2,] 0
## [3,] 0
## [4,] 0
(C[,1:2] %*% D[1:2,])
## [,1]
## [1,] 24
## [2,] -6
## [3,] -12
## [4,] -6
(C[,1:2] %*% D[1:2,])/6
## [,1]
## [1,] 4
## [2,] -1
## [3,] -2
## [4,] -1
(C[,3:4] %*% -D[3:4,])
## [,1]
## [1,] 24
## [2,] -6
## [3,] -12
## [4,] -6
(C[,3:4] %*% -D[3:4,])/6
## [,1]
## [1,] 4
## [2,] -1
## [3,] -2
## [4,] -1
\(U_1 \cap U_2 = \mbox{span} ( [4, -1, -2, -1]^T )\)
#########
# 2.13 #
#########
A = matrix(c(1,1,2,1,0,-2,1,0,1,-1,3,1),ncol=3); A
## [,1] [,2] [,3]
## [1,] 1 0 1
## [2,] 1 -2 -1
## [3,] 2 1 3
## [4,] 1 0 1
gaussianElimination(A)
## [,1] [,2] [,3]
## [1,] 1 0 1
## [2,] 0 1 1
## [3,] 0 0 0
## [4,] 0 0 0
A=matrix(c(3,1,7,3,-3,2,-5,-1,0,3,2,2),ncol=3); A
## [,1] [,2] [,3]
## [1,] 3 -3 0
## [2,] 1 2 3
## [3,] 7 -5 2
## [4,] 3 -1 2
gaussianElimination(A)
## [,1] [,2] [,3]
## [1,] 1 0 1
## [2,] 0 1 1
## [3,] 0 0 0
## [4,] 0 0 0
\(U_1 \cap U_2 = \mbox{span}\: ( [ 1, 1, -1 ]^T)\).
#########
# 2.14 #
#########
A = matrix(c(1,1,2,1,0,-2,1,0,1,-1,3,1), ncol = 3); A
## [,1] [,2] [,3]
## [1,] 1 0 1
## [2,] 1 -2 -1
## [3,] 2 1 3
## [4,] 1 0 1
gaussianElimination(A)
## [,1] [,2] [,3]
## [1,] 1 0 1
## [2,] 0 1 1
## [3,] 0 0 0
## [4,] 0 0 0
B = matrix(c(3,1,7,3,-3,2,-5,-1,0,3,2,2),ncol=3,byrow = F); B
## [,1] [,2] [,3]
## [1,] 3 -3 0
## [2,] 1 2 3
## [3,] 7 -5 2
## [4,] 3 -1 2
gaussianElimination(B)
## [,1] [,2] [,3]
## [1,] 1 0 1
## [2,] 0 1 1
## [3,] 0 0 0
## [4,] 0 0 0
C = cbind( A[,1:2],-B[,1:2]); C
## [,1] [,2] [,3] [,4]
## [1,] 1 0 -3 3
## [2,] 1 -2 -1 -2
## [3,] 2 1 -7 5
## [4,] 1 0 -3 1
gaussianElimination(C)
## [,1] [,2] [,3] [,4]
## [1,] 1 0 -3 0
## [2,] 0 1 -1 0
## [3,] 0 0 0 1
## [4,] 0 0 0 0
D=matrix(c(3,1,1,0), ncol = 1); D
## [,1]
## [1,] 3
## [2,] 1
## [3,] 1
## [4,] 0
C %*% D
## [,1]
## [1,] 0
## [2,] 0
## [3,] 0
## [4,] 0
C[,1:2] %*% D[1:2,]
## [,1]
## [1,] 3
## [2,] 1
## [3,] 7
## [4,] 3
\(U_1 \cap U_2 = \mbox{span}\: ( [ 3, 1, 7, 3 ]^T)\).
#########
# 2.15 #
#########
# c.
A=rbind(c(1,1,-1),-(1:3==2),-(1:3==3)); A
## [,1] [,2] [,3]
## [1,] 1 1 -1
## [2,] 0 -1 0
## [3,] 0 0 -1
B=cbind(c(1,1,1),c(-1,1,-3)); B
## [,1] [,2]
## [1,] 1 -1
## [2,] 1 1
## [3,] 1 -3
C=cbind(A[,2:3],-B); C
## [,1] [,2] [,3] [,4]
## [1,] 1 -1 -1 1
## [2,] -1 0 -1 -1
## [3,] 0 -1 -1 3
gaussianElimination(C)->C1; C1
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 -2
## [2,] 0 1 0 -6
## [3,] 0 0 1 3
C2 = rbind(C1[1:3,],-(1:4==4))
D = C2[,4]
C %*% D
## [,1]
## [1,] 0
## [2,] 0
## [3,] 0
A[,2:3] %*% D[1:2]
## [,1]
## [1,] 4
## [2,] 2
## [3,] 6
A[,2:3] %*% D[1:2]/2
## [,1]
## [1,] 2
## [2,] 1
## [3,] 3
\(F \cap G = \mbox{span}\: ( [ 2, 1, 3 ]^T)\).
Da. \(\forall f, g \in L^1( [ a, b ] ), \ \forall \lambda, \psi \in \mathbb{R}\int_a^b ( \lambda f ( x ) + \psi g ( x ) ) dx = \lambda \ \int_a^b f ( x ) dx + \psi \int_a^b g ( x ) dx\). Vektorski prostor \(L^1( [ a, b ] )\) je beskonačno-dimenzionalni vektorski prostor nad \(\mathbb{R}\).
Da. \(\forall f, g \in C^1, \forall \lambda, \psi \in \mathbb{R}, \forall x \in \mathbb{R}\ ( \lambda f ( x ) + \psi g ( x ) )' = \lambda f' ( x ) + g' ( x )\). \(C^1\) i \(C^0\) su beskonačno-dimenzionalni vektorski prostori nad \(\mathbb{R}\).
Ne. \(\Phi ( 0 ) = 1\).
Da. Na osnovu distributivnosti množenja matrica i osobina množenja matrice skalarom.
Da. Na osnovu distributivnosti množenja matrica i osobina množenja matrice skalarom. Ova transformacija predstavlja rotaciju za ugao \(\theta\) u \(\mathbb{R}^2\).
#########
# 2.17 #
#########
A=matrix(c(3,2,1,1,1,1,1,-3,0,2,3,1), ncol = 3, byrow = T); A
## [,1] [,2] [,3]
## [1,] 3 2 1
## [2,] 1 1 1
## [3,] 1 -3 0
## [4,] 2 3 1
gaussianElimination(A)->A1; A1
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
## [4,] 0 0 0
#########
# 2.19 #
#########
A=matrix(c(1,1,1,1,-1,1,0,0,1), ncol = 3); A
## [,1] [,2] [,3]
## [1,] 1 1 0
## [2,] 1 -1 0
## [3,] 1 1 1
B=matrix(c(1,1,1,1,2,1,1,0,0), ncol = 3); B
## [,1] [,2] [,3]
## [1,] 1 1 1
## [2,] 1 2 0
## [3,] 1 1 0
inv(B) %*% A %*% B
## [,1] [,2] [,3]
## [1,] 6 9 1
## [2,] -3 -5 0
## [3,] -1 -1 0
\(\tilde{A}_{\Phi} = \begin{bmatrix} 6 & 9 & 1 \\ -3 & -5 & 0 \\ -1 & -1 & 0 \\ \end{bmatrix}\)
Neka su \(V\) i \(W\) konačnodimenzionalni vektorski prostori. Neka su \(B = ( b_1, \ldots, b_n )\) uređena baza od \(V\) i \(C = ( c_1, \ldots, c_m )\) uređena baza od \(W\). Neka je \(A_{\Phi}\) matrica linearne transformacije \(\Phi : V \rightarrow W\) u odnosu na baze \(B\) i \(C\).
Neka su \(\tilde{B} = ( \tilde{b}_1, \ldots, \tilde{b}_n )\) uređena baza od \(V\) i \(\tilde{C} = ( \tilde{c}_1, \ldots, \tilde{c}_m )\) uređena baza od \(W\). Neka su matrice \(S = [ \tilde{b}_1, \ldots, \tilde{b}_n ]\) i \(T = [ \tilde{c}_1, \ldots, \tilde{c}_m ]\).
Onda se matrica linearne transformacije \(\Phi\) u odnosu na baze \(\tilde{B}\) i \(\tilde{C}\) dobija formulom \(\tilde{A}_{\Phi} = T^{-1} A_{\Phi} S\).
#########
# 2.20 #
#########
# a
B1 = matrix(c(2,1,-1,-1), ncol = 2); B1
## [,1] [,2]
## [1,] 2 -1
## [2,] 1 -1
gaussianElimination(B1)
## [,1] [,2]
## [1,] 1 0
## [2,] 0 1
B2 = matrix(c(2,-2,1,1), ncol = 2); B2
## [,1] [,2]
## [1,] 2 1
## [2,] -2 1
gaussianElimination(B2)
## [,1] [,2]
## [1,] 1 0
## [2,] 0 1
Vidimo da je \(\mbox{rk} ( [ {\boldsymbol b}_1, {\boldsymbol b}_2 ] ) = \mbox{rk} ( [ {\boldsymbol b}'_1, {\boldsymbol b}'_2 ]) = 2\), znači da su i \(B\) i \(B'\) baze od \(\mathbb{R}^2\).
Neka je \(\mbox{id}_{\mathbb{R}^2}\) identična linearna transformacija. \(\mbox{id}_{\mathbb{R}^2} : {\boldsymbol x} \mapsto {\boldsymbol x}\).
Onda su matrice \([ {\boldsymbol b}_1, {\boldsymbol b}_2 ]\) i \([ {\boldsymbol b}'_1, {\boldsymbol b}'_2 ]\) matrice transformacije \(\mbox{id}_{\mathbb{R}^2}\) u odnosu na standardnu bazu i redom bazu \(B\) i \(B'\).
Vektor \({\boldsymbol x}\) izražen u bazi \(B\) kao, recimo, \({\boldsymbol x} = 2 {\boldsymbol b}_1 + 3 {\boldsymbol b}_2 = \begin{bmatrix} 2 \\ 3 \\ \end{bmatrix}_B\) se u standardnoj bazi dobija kao \([ {\boldsymbol b}_1, {\boldsymbol b}_2 ] \begin{bmatrix} 2 \\ 3 \\ \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & -1 \\ \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ \end{bmatrix}\).
Obrnuto, ako je \({\boldsymbol x} = \begin{bmatrix} 1 \\ -1 \\ \end{bmatrix}\) vektor u standardnoj bazi i želimo da ga prikažemo u bazi \(B\), onda dobijamo \({\boldsymbol x} = \begin{bmatrix} 2 \\ 3 \\ \end{bmatrix}_B\). Račun: \(\begin{bmatrix} 2 & -1 \\ 1 & -1 \\ \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ -1 \\ \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & -2 \\ \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ \end{bmatrix}\).
#########
# 2.20 #
#########
# b
P1=inv(B1) %*% B2; P1
## [,1] [,2]
## [1,] 4 0
## [2,] 6 -1
Kad želimo da nađemo matricu promene iz baze \(B\) u bazu \(B'\), onda tražimo prikazivanje identične transformacije u odnosu na baze \(B\) i \(B'\): \(P_1 = \begin{bmatrix} 2 & -1 \\ 1 & -1 \\ \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -2 & 1 \\ \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & -2 \\ \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -2 & 1 \\ \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 6 & -1 \\ \end{bmatrix}\)
#########
# 2.20 #
#########
# c
P2 = matrix(c(1,2,-1,0,-1,2,1,0,-1), ncol = 3); P2
## [,1] [,2] [,3]
## [1,] 1 0 1
## [2,] 2 -1 0
## [3,] -1 2 -1
det(P2)
## [1] 4
Neka je matrica \(P_2 = [ {\boldsymbol c}_1, {\boldsymbol c}_2 , {\boldsymbol c}_3 ]\).
Pošto je \(\mbox{det} P_2 \neq 0\), \(C\) jeste baza, jer je punog ranga. Upravo matrica \(P_2\) je matrica promene iz baze \(C\) u standardnu bazu \(C'\).
#########
# 2.20 #
#########
# d
AB = matrix(c(1,1,1,-1,0,2,1,-1,1,3), ncol = 5); AB
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 1 0 1 1
## [2,] 1 -1 2 -1 3
ABG = gaussianElimination(AB); ABG
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 1 0 2
## [2,] 0 1 -1 1 -1
A = t(ABG[,3:5]); A
## [,1] [,2]
## [1,] 1 -1
## [2,] 0 1
## [3,] 2 -1
\(\Phi ( {\boldsymbol b}_1 + {\boldsymbol
b}_2 ) = \Phi ( {\boldsymbol b}_1 ) + \Phi ( {\boldsymbol b}_1 ) =
\phantom{2 c_1 - } \; c_2 + c_3\)
\(\Phi ( {\boldsymbol b}_1 - {\boldsymbol b}_2 ) =
\Phi ( {\boldsymbol b}_1 ) - \Phi ( {\boldsymbol b}_1 ) = 2 c_1 - c_2 +
3 c_3\)
Primenom Gausovih transformacija:
\(\Phi ( {\boldsymbol b}_1 ) = \phantom{-} c_1
\phantom{ + 3 c_2 } + 2 c_3\)
\(\Phi ( {\boldsymbol b}_2 )
= - c_1 + c_2 - \phantom{2} c_3\)
Dobijamo da je \(A_{\Phi} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & -1 \\ \end{bmatrix}\) matrica transformacija \(\phi\) u odnosu na uređene baze \(B = ( {\boldsymbol b}_1, {\boldsymbol b}_2 )\) i \(C = ( {\boldsymbol c}_1, {\boldsymbol c}_2, {\boldsymbol c}_3 )\).
#########
# 2.20 #
#########
# e
A1 = P2 %*% A%*% P1; A1
## [,1] [,2]
## [1,] 0 2
## [2,] -10 3
## [3,] 12 -4
Koristimo formulu \(\tilde{A}_{\Phi} = T^{-1} A_{\Phi} S\), gde je \(T^{-1} = P_2\) (dobijeno pod c) i \(S= P_1\) (dobijeno pod b).
#########
# 2.20 #
#########
# f
x = matrix(c(2,3), ncol=1); x
## [,1]
## [1,] 2
## [2,] 3
# (i)
P1 %*% x
## [,1]
## [1,] 8
## [2,] 9
# (ii)
A %*% P1 %*% x
## [,1]
## [1,] -1
## [2,] 9
## [3,] 7
# (iii)
P2 %*% A %*% P1 %*% x
## [,1]
## [1,] 6
## [2,] -11
## [3,] 12
# (iv)
A1 %*% x
## [,1]
## [1,] 6
## [2,] -11
## [3,] 12