
CHAPTER 7

Binary Variables and Logistic
Regression

7.1 Probability distributions

In this chapter we consider generalized linear models in which the outcome
variables are measured on a binary scale. For example, the responses may be
alive or dead, or present or absent. Success and failure are used as generic
terms of the two categories.

First, we define the binary random variable

Z =

{
1 if the outcome is a success
0 if the outcome is a failure

with probabilities Pr(Z = 1) = π and Pr(Z = 0) = 1 − π, which is the
Bernoulli distribution B(π). If there are n such random variables Z1, . . . , Zn,
which are independent with Pr(Zj = 1) = πj , then their joint probability is

n∏

j=1

π
zj

j (1 − πj)
1−zj = exp




n∑

j=1

zj log

(
πj

1 − πj

)
+

n∑

j=1

log(1 − πj)


 , (7.1)

which is a member of the exponential family (see equation (3.3)).
Next, for the case where the πj ’s are all equal, we can define

Y =

n∑

j=1

Zj

so that Y is the number of successes in n “trials”. The random variable Y
has the distribution Bin(n, π):

Pr(Y = y) = ( n
y ) πy(1 − π)n−y, y = 0, 1, . . . , n. (7.2)

Finally, we consider the general case of N independent random variables
Y1, Y2, . . . , YN corresponding to the numbers of successes in N different sub-
groups or strata (Table 7.1). If Yi ∼ Bin(ni, πi), the log-likelihood function
is

l(π1, . . . , πN ; y1, . . . , yN )

=

N∑

i=1

[
yi log

(
πi

1 − πi

)
+ ni log(1 − πi) + log ( ni

yi
)

]
. (7.3)
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Table 7.1 Frequencies for N Binomial distributions.

Subgroups
1 2 . . . N

Successes Y1 Y2 . . . YN

Failures n1 − Y1 n2 − Y2 . . . nN − YN

Totals n1 n2 . . . nN

7.2 Generalized linear models

We want to describe the proportion of successes, Pi = Yi/ni, in each subgroup
in terms of factor levels and other explanatory variables which characterize
the subgroup. As E(Yi) = niπi and so E(Pi) = πi, we model the probabilities
πi as

g(πi) = xT
i β,

where xi is a vector of explanatory variables (dummy variables for factor levels
and measured values for covariates), β is a vector of parameters and g is a
link function.

The simplest case is the linear model

π = xT β.

This is used in some practical applications, but it has the disadvantage that
although π is a probability, the fitted values xT b may be less than zero or
greater than one.

To ensure that π is restricted to the interval [0,1] it is often modelled using
a cumulative probability distribution

π =

∫ t

−∞
f(s)ds,

where f(s) > 0 and
∫∞
−∞ f(s)ds = 1. The probability density function f(s)

is called the tolerance distribution. Some commonly used examples are
considered in Section 7.3.

7.3 Dose response models

Historically, one of the first uses of regression-like models for Binomial data
was for bioassay results (Finney 1973). Responses were the proportions or per-
centages of “successes”; for example, the proportion of experimental animals
killed by various dose levels of a toxic substance. Such data are sometimes
called quantal responses. The aim is to describe the probability of “suc-
cess”, π, as a function of the dose, x; for example, g(π) = β1 + β2x.

If the tolerance distribution f(s) is the uniform distribution on the interval
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[c1, c2]

f(s) =






1

c2 − c1
if c1 6 s 6 c2

0 otherwise
,

then π is cumulative

π =

∫ x

c1

f(s)ds =
x − c1

c2 − c1
for c1 6 x 6 c2

(see Figure 7.1). This equation has the form π = β1 + β2x, where

β1 =
−c1

c2 − c1
and β2 =

1

c2 − c1
.

/(c2 -c1)

c1 c2 c1 c2

1

1

Figure 7.1 Uniform distribution: f(s) and π.

This linear model is equivalent to using the identity function as the link
function g and imposing conditions on x, β1 and β2 corresponding to c1 ≤ x ≤
c2. These extra conditions mean that the standard methods for estimating β1

and β2 for generalized linear models cannot be directly applied. In practice,
this model is not widely used.

One of the original models used for bioassay data is called the probit
model. The Normal distribution is used as the tolerance distribution (see
Figure 7.2).

π =
1

σ
√

2π

∫ x

−∞
exp

[
−1

2

(
s − µ

σ

)2
]

ds

= Φ

(
x − µ

σ

)
,

where Φ denotes the cumulative probability function for the standard Normal
distribution N(0, 1). Thus,

Φ−1(π) = β1 + β2x
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where β1 = −µ/σ and β2 = 1/σ and the link function g is the inverse cumula-
tive Normal probability function Φ−1. Probit models are used in several areas
of biological and social sciences in which there are natural interpretations of
the model; for example, x = µ is called the median lethal dose LD(50)
because it corresponds to the dose that can be expected to kill half of the
animals.

x x

Figure 7.2 Normal distribution: f(s) and π.

Another model that gives numerical results very much like those from the
probit model, but which computationally is somewhat easier, is the logistic
or logit model. The tolerance distribution is

f(s) =
β2 exp(β1 + β2s)

[1 + exp(β1 + β2s)]
2 ,

so

π =

∫ x

−∞
f(s)ds =

exp(β1 + β2x)

1 + exp(β1 + β2x)
.

This gives the link function

log

(
π

1 − π

)
= β1 + β2x.

The term log[π/(1 − π)] is sometimes called the logit function and it has a
natural interpretation as the logarithm of odds (see Exercise 7.2). The logistic
model is widely used for Binomial data and is implemented in many statistical
programs. The shapes of the functions f(s) and π(x) are similar to those for
the probit model (Figure 7.2) except in the tails of the distributions (see Cox
and Snell 1989).

Several other models are also used for dose response data. For example, if
the extreme value distribution

f(s) = β2 exp [(β1 + β2s) − exp (β1 + β2s)]
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is used as the tolerance distribution, then

π = 1 − exp [− exp (β1 + β2x)] ,

and so log[− log(1 − π)] = β1 + β2x. This link, log[− log(1 − π)], is called the
complementary log-log function. The model is similar to the logistic and
probit models for values of π near 0.5 but differs from them for π near 0 or 1.
These models are illustrated in the following example.

Table 7.2 Beetle mortality data.

Dose, xi Number of Number
(log10CS2mgl−1) beetles, ni killed, yi

1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 53
1.8610 62 61
1.8839 60 60
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Figure 7.3 Beetle mortality data from Table 7.2: proportion killed, pi = yi/ni, plotted
against dose, xi (log10CS2mgl−1).

7.3.1 Example: Beetle mortality

Table 7.2 shows numbers of beetles dead after five hours exposure to gaseous
carbon disulphide at various concentrations (data from Bliss 1935). Figure 7.3
shows the proportions pi = yi/ni plotted against dose xi (actually xi is the
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logarithm of the quantity of carbon disulphide). We begin by fitting the logistic
model

πi =
exp (β1 + β2xi)

1 + exp (β1 + β2xi)
so

log

(
πi

1 − πi

)
= β1 + β2xi

and
log(1 − πi) = − log [1 + exp (β1 + β2xi)] .

Therefore from equation (7.3) the log-likelihood function is

l =

N∑

i=1

[
yi (β1 + β2xi) − ni log [1 + exp (β1 + β2xi)] + log

(
ni

yi

)]
,

and the scores with respect to β1 and β2 are

U1 =
∂l

∂β1
=
∑{

yi − ni

[
exp (β1 + β2xi)

1 + exp (β1 + β2xi)

]}
=
∑

(yi − niπi)

U2 =
∂l

∂β2
=
∑{

yixi − nixi

[
exp (β1 + β2xi)

1 + exp (β1 + β2xi)

]}

=
∑

xi(yi − niπi).

Similarly the information matrix is

I =




∑
niπi(1 − πi)

∑
nixiπi(1 − πi)

∑
nixiπi(1 − πi)

∑
nix

2
i πi(1 − πi)


 .

Maximum likelihood estimates are obtained by solving the iterative equa-
tion

I
(m−1)bm = I

(m−1)b(m−1) + U(m−1)

(from (4.22)) where the superscript (m) indicates the mth approximation and

b is the vector of estimates. Starting with b
(0)
1 = 0 and b

(0)
2 = 0, successive

approximations are shown in Table 7.3. The estimates converge by the sixth
iteration. The table also shows the increase in values of the log-likelihood
function (7.3), omitting the constant term log ( ni

yi
). The fitted values are ŷi =

niπ̂i calculated at each stage (initially π̂i = 0.5 for all i).
For the final approximation, the estimated variance–covariance matrix for

b,
[
I(b)−1

]
, is shown at the bottom of Table 7.3 together with the deviance

D = 2

N∑

i=1

[
yi log

(
yi

ŷi

)
+ (ni − yi) log

(
n − yi

n − ŷi

)]

(from Section 5.6.1).
The estimates and their standard errors are

b1 = −60.72, standard error =
√

26.840 = 5.18

and b2 = 34.27, standard error =
√

8.481 = 2.91.



DOSE RESPONSE MODELS 129

Table 7.3 Fitting a linear logistic model to the beetle mortality data.

Initial Approximation
estimate First Second Sixth

β1 0 −37.856 −53.853 −60.717
β2 0 21.337 30.384 34.270
log-likelihood −333.404 −200.010 −187.274 −186.235

Observations Fitted values
y1 6 29.5 8.505 4.543 3.458
y2 13 30.0 15.366 11.254 9.842
y3 18 31.0 24.808 23.058 22.451
y4 28 28.0 30.983 32.947 33.898
y5 52 31.5 43.362 48.197 50.096
y6 53 29.5 46.741 51.705 53.291
y7 61 31.0 53.595 58.061 59.222
y8 60 30.0 54.734 58.036 58.743

[I(b)]−1 =

[
26.840 −15.082
−15.082 8.481

]
, D = 11.23

If the model is a good fit of the data, the deviance should approximately
have the distribution χ2(6) because there are N = 8 covariate patterns (i.e.,
different values of xi) and p = 2 parameters. But the calculated value of D is
almost twice the “expected” value of 6 and is almost as large as the upper 5%
point of the χ2(6) distribution, which is 12.59. This suggests that the model
does not fit particularly well.

Statistical software for fitting generalized linear models for dichotomous
responses often differs between the case when the data are grouped as counts
of successes y and failures n−y in n trials with the same covariate pattern and
the case when the data are binary (0 or 1) responses (see later example with
data in Table 7.8). For Stata the logistic regression model for the grouped data
for beetle mortality in Table 7.2 can be fitted using the following command

Stata code (logistic regression)
.glm y x, family(binomial n) link(logit)

The estimated variance–covariance matrix can be obtained by selecting the
option to display the negative Hessian matrix using

Stata code (logistic regression)
.glm y x, family(binomial n) link(logit) hessian
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Evaluated for the final estimates, this matrix is given as

[
58.484 104.011
104.011 185.094

]
,

which can be inverted to obtain

[
26.8315 −15.0775
−15.0775 8.4779

]
, which is the same

as in Table 7.3 (except for rounding effects). The value for the log-likelihood

shown by Stata does not include the term
∑N

i=1 log ( ni
yi

) in (7.3). For the
beetle mortality data the value of this term in −167.5203 so, compared with
the value of −186.235 in Table 7.3, the log-likelihood value shown by Stata is
−186.235− (−167.5203) = −18.715. Fitted values can be obtained after the
model is fitted using the command

Stata code (fitted values)
.predict fit, mu

To use R to fit generalized linear models to grouped dichotomous data, it
is necessary to construct a response matrix with two columns, y and (n− y),
as shown below for the beetle mortality data using the S-PLUS lists denoted
by c.

R code (data entry and manipulation)
>y=c(6,13,18,28,52,53,61,60)

>n=c(59,60,62,56,63,59,62,60)

>x=c(1.6907,1.7242,1.7552,1.7842,1.8113,1.8369,1.8610,1.8839)

>n_y=n-y

>beetle.mat=cbind(y,n_y)

The logistic regression model can then be fitted using the command

R code (logistic regression)
>res.glm1=glm(beetle.mat~x, family=binomial(link="logit"))

The fitted values obtained from

R code (fitted values)
>fitted.values(res.glm1)

are estimated proportions of deaths in each group and so the fitted values for
y need to be calculated as follows:

R code (fitted values)
>fit_p=c(fitted.values(res.glm1))

>fit_y=n*fit_p

Several alternative models can be fitted to the beetle mortality data. The
results are shown in Table 7.4. Among these models the extreme value model
appears to fit the data best. For Stata the relevant commands are

Stata code (probit model)
.glm y x, family(binomial n) link(probit)
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Table 7.4 Comparison of observed numbers killed with fitted values obtained from
various dose-response models for the beetle mortality data. Deviance statistics are
also given.

Observed Logistic Probit Extreme
value model model value
of Y model

6 3.46 3.36 5.59
13 9.84 10.72 11.28
18 22.45 23.48 20.95
28 33.90 33.82 30.37
52 50.10 49.62 47.78
53 53.29 53.32 54.14
61 59.22 59.66 61.11
60 58.74 59.23 59.95

D 11.23 10.12 3.45

b1(s.e.) −60.72(5.18) −34.94(2.64) −39.57(3.23)

b2(s.e.) 34.27(2.91) 19.73(1.48) 22.04(1.79)

and

Stata code (extreme value model)
.glm y x, family(binomial n) link(cloglog)

For R they are

R code (probit model)
>res.glm2=glm(beetle.mat~x, family=binomial(link="probit"))

and

R code (extreme value model)
>res.glm3=glm(beetle.mat~x, family=binomial(link="cloglog"))

7.4 General logistic regression model

The simple linear logistic model log[πi/(1 − πi)] = β1 + β2xi used in Exam-
ple 7.3.1 is a special case of the general logistic regression model

logit πi = log

(
πi

1 − πi

)
= xT

i β,

where xi is a vector of continuous measurements corresponding to covariates
and dummy variables corresponding to factor levels and β is the parameter
vector. This model is very widely used for analyzing data involving binary
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or Binomial responses and several explanatory variables. It provides a pow-
erful technique analogous to multiple regression and ANOVA for continuous
responses.

Maximum likelihood estimates of the parameters β, and consequently of the
probabilities πi = g−1(xT

i β), are obtained by maximizing the log-likelihood
function

l(π;y) =

N∑

i=1

[yi log πi + (ni − yi) log(1 − πi) + log ( ni
yi

)] (7.4)

using the methods described in Chapter 4.

The estimation process is essentially the same whether the data are grouped
as frequencies for each covariate pattern (i.e., observations with the same
values of all the explanatory variables) or each observation is coded 0 or 1
and its covariate pattern is listed separately. If the data can be grouped,
the response Yi, the number of “successes” for covariate pattern i, may be
modelled by the Binomial distribution. If each observation has a different
covariate pattern, then ni = 1 and the response Yi is binary.

The deviance, derived in Section 5.6.1, is

D = 2

N∑

i=1

[
yi log

(
yi

ŷi

)
+ (ni − yi) log

(
ni − yi

ni − ŷi

)]
. (7.5)

This has the form

D = 2
∑

o log
o

e

where o denotes the observed “successes” yi and “failures” (ni − yi) from
the cells of Table 7.1 and e denotes the corresponding estimated expected
frequencies or fitted values ŷi = niπ̂i and (ni − ŷi) = (ni − niπ̂i). Summation
is over all 2 × N cells of the table.

Notice that D does not involve any nuisance parameters (like σ2 for Normal
response data), so goodness of fit can be assessed and hypotheses can be tested
directly using the approximation

D ∼ χ2(N − p),

where p is the number of parameters estimated and N the number of covariate
patterns.

The estimation methods and sampling distributions used for inference de-
pend on asymptotic results. For small studies or situations where there are
few observations for each covariate pattern, the asymptotic results may be
poor approximations. However software, such as StatXact and LogXact, has
been developed using “exact” methods so that the methods described in this
chapter can be used even when sample sizes are small.
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Table 7.5 Embryogenic anther data.

Centrifuging force (g)
Storage condition 40 150 350

Control y1k 55 52 57
n1k 102 99 108

Treatment y2k 55 50 50
n2k 76 81 90

7.4.1 Example: Embryogenic anthers

The data in Table 7.5, cited by Wood (1978), are taken from Sangwan-Norrell
(1977). They are numbers yjk of embryogenic anthers of the plant species
Datura innoxia Mill. obtained when numbers njk of anthers were prepared
under several different conditions. There is one qualitative factor with two
levels, a treatment consisting of storage at 3◦C for 48 hours or a control
storage condition, and one continuous explanatory variable represented by
three values of centrifuging force. We will compare the treatment and control
effects on the proportions after adjustment (if necessary) for centrifuging force.

The proportions pjk = yjk/njk in the control and treatment groups are
plotted against xk, the logarithm of the centrifuging force, in Figure 7.4. The
response proportions appear to be higher in the treatment group than in the
control group, and at least for the treated group, the response decreases with
centrifuging force.
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Figure 7.4 Anther data from Table 7.5: proportion that germinated pjk = yjk/njk

plotted against loge(centrifuging force); dots represent the treatment condition and
diamonds represent the control condition.

We will compare three logistic models for πjk, the probability of the anthers



134 BINARY VARIABLES AND LOGISTIC REGRESSION

being embryogenic, where j = 1 for the control group and j = 2 for the
treatment group and x1 = loge 40 = 3.689, x2 = loge 150 = 5.011, and x3 =
loge 350 = 5.858.

Model 1: logit πjk = αj + βjxk (i.e., different intercepts and slopes);
Model 2: logit πjk = αj +βxk (i.e., different intercepts but the same slope);
Model 3: logit πjk = α + βxk (i.e., same intercept and slope).
These models were fitted by the method of maximum likelihood. The results

are summarized in Table 7.6. To test the null hypothesis that the slope is the
same for the treatment and control groups, we use D2−D1 = 2.591. From the
tables for the χ2(1) distribution, the significance level is between 0.1 and 0.2,
and so we could conclude that the data provide little evidence against the null
hypothesis of equal slopes. On the other hand, the power of this test is very
low and both Figure 7.4 and the estimates for Model 1 suggest that although
the slope for the control group may be zero, the slope for the treatment group
is negative. Comparison of the deviances from Models 2 and 3 gives a test for
equality of the control and treatment effects after a common adjustment for
centrifuging force: D3 − D2 = 0.491, which is consistent with the hypothesis
that the storage effects are not different. The observed proportions and the
corresponding fitted values for Models 1, 2 and 3 are shown in Table 7.7. Ob-
viously, Model 1 fits the data very well but this is hardly surprising since four
parameters have been used to describe six data points—such “over-fitting” is
not recommended!

Table 7.6 Maximum likelihood estimates and deviances for logistic models for the
embryogenic anther data (standard errors of estimates in brackets).

Model 1 Model 2 Model 3

a1 = 0.234(0.628) a1 = 0.877(0.487) a = 1.021(0.481)
a2 − a1 = 1.977(0.998) a2 − a1 = 0.407(0.175) b = −0.148(0.096)
b1 = −0.023(0.127) b = −0.155(0.097)
b2 − b1 = −0.319(0.199)

D1 = 0.028 D2 = 2.619 D3 = 8.092

These results can be reproduced using Stata. If the control and treatment
groups are recoded to 0 and 1, respectively (in a variable called newstor =
j− 1), and an interaction term is created by multiplying this variable and the
x vector, then the models can be fitted using the following commands:

Stata code (logistic models)
.glm y newstor x interaction, family(binomial n) link(logit)

.glm y newstor x, family(binomial n) link(logit)

.glm y x, family(binomial n) link(logit)

For R it is necessary to set up the response matrix with columns of values
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of y and (n − y) and then the commands are similar to those for Stata. For
example, for Model 1 the interaction term can be explicitly used and it includes
the main effects

R code (logistic model)
>res.glm3=glm(anther.mat~newstor*x,family=binomial(link="logit"))

Table 7.7 Observed and expected frequencies for the embryogenic anther data for
various models.

Storage Covariate Observed Expected frequencies
condition value frequency Model 1 Model 2 Model 3

Control x1 55 54.82 58.75 62.91
x2 52 52.47 52.03 56.40
x3 57 56.72 53.22 58.18

Treatment x1 55 54.83 51.01 46.88
x2 50 50.43 50.59 46.14
x3 50 49.74 53.40 48.49

7.5 Goodness of fit statistics

Instead of using maximum likelihood estimation we could estimate the pa-
rameters by minimizing the weighted sum of squares

Sw =
N∑

i=1

(yi − niπi)
2

niπi(1 − πi)

since E(Yi) = niπi and var(Yi) = niπi(1 − πi).
This is equivalent to minimizing the Pearson chi-squared statistic

X2 =
∑ (o − e)2

e
,

where o represents the observed frequencies in Table 7.1, e represents the
expected frequencies and summation is over all 2 ×N cells of the table. The
reason is that

X2 =
N∑

i=1

(yi − niπi)
2

niπi
+

N∑

i=1

[(ni − yi) − ni(1 − πi)]
2

ni(1 − πi)

=

N∑

i=1

(yi − niπi)
2

niπi(1 − πi)
(1 − πi + πi) = Sw.

When X2 is evaluated at the estimated expected frequencies, the statistic
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is

X2 =

N∑

i=1

(yi − niπ̂i)
2

niπ̂i(1 − π̂i)
(7.6)

which is asymptotically equivalent to the deviances in (7.5),

D = 2
N∑

i=1

[
yi log

(
yi

niπ̂i

)
+ (ni − yi) log

(
ni − yi

ni − niπ̂i

)]
.

The proof of the relationship between X2 and D uses the Taylor series
expansion of s log(s/t) about s = t, namely,

s log
s

t
= (s − t) +

1

2

(s − t)2

t
+ . . . .

Thus,

D = 2

N∑

i=1

{(yi − niπ̂i) +
1

2

(yi − niπ̂i)
2

niπ̂i
+ [(ni − yi) − (ni − niπ̂i)]

+
1

2

[(ni − yi) − (ni − niπ̂i)]
2

ni − niπ̂i
+ . . .}

∼=
N∑

i=1

(yi − niπ̂i)
2

niπ̂i(1 − π̂i)
= X2.

The asymptotic distribution of D, under the hypothesis that the model is
correct, is D ∼ χ2(N − p), therefore, approximately X2 ∼ χ2(N − p). The
choice between D and X2 depends on the adequacy of the approximation
to the χ2(N − p) distribution. There is some evidence to suggest that X2 is
often better than D because D is unduly influenced by very small frequen-
cies (Cressie and Read 1989). Both the approximations are likely to be poor,
however, if the expected frequencies are too small (e.g., less than 1).

In particular, if each observation has a different covariate pattern so yi is
zero or one, then neither D nor X2 provides a useful measure of fit. This can
happen if the explanatory variables are continuous, for example. The most
commonly used approach in this situation is due to Hosmer and Lemeshow
(1980). Their idea was to group observations into categories on the basis of
their predicted probabilities. Typically about 10 groups are used with approx-
imately equal numbers of observations in each group. The observed numbers
of successes and failures in each of the g groups are summarized as shown
in Table 7.1. Then the Pearson chi-squared statistic for a g × 2 contingency
table is calculated and used as a measure of fit. We denote this Hosmer–
Lemeshow statistic by X2

HL. The sampling distribution of X2
HL has been

found by simulation to be approximately χ2(g − 2). The use of this statistic
is illustrated in the example in Section 7.8.

Sometimes the log-likelihood function for the fitted model is compared with
the log-likelihood function for a minimal model, in which the values πi are all
equal (in contrast to the saturated model which is used to define the deviance).
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Under the minimal model π̃ = (Σyi) / (Σni). Let π̂i denote the estimated
probability for Yi under the model of interest (so the fitted value is ŷi = niπ̂i).
The statistic is defined by

C = 2 [l (π̂;y) − l (π̃;y)] ,

where l is the log-likelihood function given by (7.4). Thus,

C = 2
∑[

yi log

(
ŷi

nπ̃i

)
+ (ni − yi) log

(
ni − ŷi

ni − niπ̃i

)]
.

From the results in Section 5.2, the approximate sampling distribution for
C is χ2(p − 1) if all the p parameters except the intercept term β1 are zero
(see Exercise 7.4). Otherwise C will have a non-central distribution. Thus C
is a test statistic for the hypothesis that none of the explanatory variables is
needed for a parsimonious model. C is sometimes called the likelihood ratio
chi-squared statistic.

By analogy with R2 for multiple linear regression (see Section 6.3.2) another
statistic sometimes used is

pseudoR2 =
l (π̃;y) − l (π̂;y)

l (π̃;y)
,

which represents the proportional improvement in the log-likelihood function
due to the terms in the model of interest, compared with the minimal model.
This statistic is produced by some statistical programs as a measure of good-
ness of fit. As for R2, the sampling distribution of pseudo R2 is not readily
determined (so p-values cannot be obtained), and it increases as more param-
eters are added to the model. Therefore, various modifications of pseudo R2

are used to adjust for the number of parameters (see, for example, Liao and
McGee 2003). For logistic regression R2-type measures often appear alarm-
ingly small even when other measures suggest that the model fits the data well.
The reason is that pseudo R2 is a measure of the predictability of individual
outcomes Yi rather than the predictability of all the event rates (Mittlbock
and Heinzl 2001).

The Akaike information criterion AIC and the Schwartz or Bayesian
information criterion BIC are other goodness of fit statistics based on
the log-likelihood function with adjustment for the number of parameters
estimated and for the amount of data. These statistics are usually defined as
follows:

AIC = −2l (π̂;y) + 2p (7.7)

BIC = −2l (π̂;y) + 2p× ln(number of observations),

where p is the number of parameters estimated. The statistical software R
uses this definition of AIC, for example. However, the versions used by Stata
are somewhat different:

AICStata = (−2l (π̂;y) + 2p)/N,
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where N is the number of subgroups in Table 7.1, and

BICStata = D − (N − p) ln

N∑

i=1

ni,

where D is the deviance for the model, (N − p) is the corresponding degrees

of freedom and
∑N

i=1 ni is the total number of observations.

Note that the statistics (except for pseudo R2) discussed in this section
summarize how well a particular model fits the data. So a small value of
the statistic and, hence, a large p-value, indicates that the model fits well.
These statistics are not usually appropriate for testing hypotheses about the
parameters of nested models, but they can be particularly useful for comparing
models that are not nested.

For the logistic model for the beetle mortality example (Section 7.3.1),
the log-likelihood for the model with no explanatory variable is l (π̃;y) =
(−167.5203−155.2002) = −322.7205, while l (π̂;y) = (−167.5203−18.7151) =
−186.2354, so the statistic C = 2 × (−186.2354 − (−322.7205)) = 272.970
with one degree of freedom, indicating that the slope parameter β1 is defi-
nitely needed! The pseudo R2 value is 2 × (−322.72051− (−186.23539))/2×
(−322.72051) = 0.4229 indicating reasonable but not excellent fit. The usual
value for AIC = −2 × (−18.7151) + 2 × 2 = 41.430—this is the value given
by R, for example. Stata gives AICStata = 41.430/8 = 5.179 and BICStata =
11.2322 − (8 − 2) × ln 481 = −25.823. All these measures show marked im-
provements when the extreme value model is fitted compared with the logistic
model.

7.6 Residuals

For logistic regression there are two main forms of residuals corresponding
to the goodness of fit measures D and X2. If there are m different covariate
patterns, then m residuals can be calculated. Let Yk denote the number of
successes, nk the number of trials and π̂k the estimated probability of success
for the kth covariate pattern.

The Pearson, or chi-squared, residual is

Xk =
(yk − nkπ̂k)√
nkπ̂k (1 − π̂k)

, k = 1, . . . , m. (7.8)

From (7.6),
∑m

k=1 X2
k = X2, the Pearson chi-squared goodness of fit statis-

tic. The standardized Pearson residuals are

rPk =
Xk√
1 − hk

,

where hk is the leverage, which is obtained from the hat matrix (see Sec-
tion 6.2.6).
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Deviance residuals can be defined similarly,

dk = sign(yk − nkπ̂k)

{
2

[
yk log

(
yk

nkπ̂k

)
+ (nk − yk) log

(
nk − yk

nk − nkπ̂k

)]}1/2

(7.9)
where the term sign(yk − nkπ̂k) ensures that dk has the same sign as Xk.
From equation (7.5),

∑m
k=1 d2

k = D, the deviance. Also standardized deviance
residuals are defined by

rDk =
dk√

1 − hk

.

Pearson and deviance residuals can be used for checking the adequacy of
a model, as described in Section 2.3.4. For example, they should be plotted
against each continuous explanatory variable in the model to check if the
assumption of linearity is appropriate and against other possible explanatory
variables not included in the model. They should be plotted in the order
of the measurements, if applicable, to check for serial correlation. Normal
probability plots can also be used because the standardized residuals should
have, approximately, the standard Normal distribution N(0, 1), provided the
numbers of observations for each covariate pattern are not too small.

If the data are binary, or if nk is small for most covariate patterns, then
there are few distinct values of the residuals and the plots may be relatively
uninformative. In this case, it may be necessary to rely on the aggregated
goodness of fit statistics X2 and D and other diagnostics (see Section 7.7).

For more details about the use of residuals for Binomial and binary data
see Chapter 5 of Collett (2003a), for example.

7.7 Other diagnostics

By analogy with the statistics used to detect influential observations in mul-
tiple linear regression, the statistics delta-beta, delta-chi-squared and delta-
deviance are also available for logistic regression (see Section 6.2.7).

For binary or Binomial data there are additional issues to consider. The first
is to check the choice of the link function. Brown (1982) developed a test for
the logit link which is implemented in some software. The approach suggested
by Aranda-Ordaz (1981) is to consider a more general family of link functions

g(π, α) = log

[
(1 − π)

−α − 1

α

]
.

If α = 1, then g (π) = log [π/ (1 − π)], the logit link. As α → 0, then g(π) →
log [− log(1 − π)], the complementary log-log link. In principle, an optimal
value of α can be estimated from the data, but the process requires several
steps. In the absence of suitable software to identify the best link function, it
is advisable to experiment with several alternative links.

The second issue in assessing the adequacy of models for binary or Binomial
data is overdispersion. Observations Yi may have observed variance greater
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than Binomial variance niπi(1 − πi), or equivalently var(π̂i) may be greater
than πi(1 − πi)/ni. There is an indicator of this problem if the deviance D
is much greater than the expected value of N − p. This could be due to in-
adequate specification of the model (e.g., relevant explanatory variables have
been omitted or the link function is incorrect) or to a more complex structure
(see Exercise 7.5). One approach is to include an extra parameter φ in the
model so that var(Yi) = niπi(1 − πi)φ. This is implemented in various ways
in statistical software. For example, in R there is an option in glm to specify
a quasibinomial distribution instead of a Binomial distribution. Another pos-
sible explanation for overdispersion is that the Yi’s are not independent. For
example if the binary responses counted by Yi are not independent, the effec-
tive number of trials n′, will be less than n so that var(π̂i) = πi(1− πi)/n′

i >
πi(1 − πi)/ni. Methods for modelling correlated data are outlined in Chap-
ter 11. For a detailed discussion of overdispersion for Binomial data, see, for
example, Collett (2003a, Chapter 6).

7.8 Example: Senility and WAIS

A sample of elderly people was given a psychiatric examination to determine
whether symptoms of senility were present. Other measurements taken at the
same time included the score on a subset of the Wechsler Adult Intelligent
Scale (WAIS). The data are shown in Table 7.8. The data in Table 7.8 are
binary although some people have the same WAIS scores and so there are
m = 17 different covariate patterns (see Table 7.9). Let Yi denote the number
of people with symptoms among ni people with the ith covariate pattern. The
logistic regression model

Table 7.8 Symptoms of senility (s=1 if symptoms are present and s=0 otherwise)
and WAIS scores (x) for N=54 people.

x s x s x s x s x s

9 1 7 1 7 0 17 0 13 0
13 1 5 1 16 0 14 0 13 0
6 1 14 1 9 0 19 0 9 0
8 1 13 0 9 0 9 0 15 0

10 1 16 0 11 0 11 0 10 0
4 1 10 0 13 0 14 0 11 0

14 1 12 0 15 0 10 0 12 0
8 1 11 0 13 0 16 0 4 0

11 1 14 0 10 0 10 0 14 0
7 1 15 0 11 0 16 0 20 0
9 1 18 0 6 0 14 0
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Table 7.9 Covariate patterns and responses, estimated probabilities (π̂), Pearson
residuals (X) and deviance residuals (d) for senility and WAIS.

x y n π̂ X d

4 1 2 0.751 −0.826 −0.766
5 0 1 0.687 0.675 0.866
6 1 2 0.614 −0.330 −0.326
7 1 3 0.535 0.458 0.464
8 0 2 0.454 1.551 1.777
9 4 6 0.376 −0.214 −0.216

10 5 6 0.303 −0.728 −0.771
11 5 6 0.240 −0.419 −0.436
12 2 2 0.186 −0.675 −0.906
13 5 6 0.142 0.176 0.172
14 5 7 0.107 1.535 1.306
15 3 3 0.080 −0.509 −0.705
16 4 4 0.059 −0.500 −0.696
17 1 1 0.043 −0.213 −0.297
18 1 1 0.032 −0.181 −0.254
19 1 1 0.023 −0.154 −0.216
20 1 1 0.017 −0.131 −0.184

Sum 40 54
Sum of squares 8.084* 9.418*

* Sums of squares differ slightly from the goodness of fit statistics

X2 and D mentioned in the text due to rounding errors.

log

(
πi

1 − πi

)
= β1 + β2xi; Yi ∼ Bin(ni, πi) i = 1, . . . , m,

was fitted with the following results:

b1 = 2.404, standard error (b1) = 1.192;
b2 = −0.3235, standard error (b2) = 0.1140;
X2 =

∑
X2

i = 8.083 and D =
∑

d2
i = 9.419.

As there are m = 17 covariate patterns (different values of x, in this exam-
ple) and p = 2 parameters, X2 and D can be compared with χ2(15) (by these
criteria the model appears to fit well).

Figure 7.5 shows the observed relative frequencies yi/ni for each covariate
pattern and the fitted probabilities π̂i plotted against WAIS score, x (for
i = 1, . . . , m). The model appears to fit better for higher values of x.

Table 7.9 shows the covariate patterns, estimates π̂i and the corresponding
chi-squared and deviance residuals calculated using equations (7.8) and (7.9),
respectively.

The residuals and associated residual plots (not shown) do not suggest that
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Figure 7.5 Relationship between presence of symptoms and WAIS score from data in
Tables 7.8 and 7.9; circles represent observed proportions and dotted line represents
estimated probabilities.

there are any unusual observations but the small numbers of observations
for each covariate value make the residuals difficult to assess. The Hosmer–
Lemeshow approach provides some simplification; Table 7.10 shows the data
in categories defined by grouping values of π̂i so that the total numbers of
observations per category are approximately equal. For this illustration, g =
3 categories were chosen. The expected frequencies are obtained from the
values in Table 7.9; there are

∑
niπ̂i with symptoms and

∑
ni (1 − π̂i) without

symptoms for each category. The Hosmer–Lemeshow statistic X2
HL is obtained

by calculating X2 = Σ
[
(o − e)2/e

]
, where the observed frequencies, o, and

expected frequencies, e, are given in Table 7.10 and summation is over all 6
cells of the table; X2

HL = 1.15, which is not significant when compared with
the χ2(1) distribution.

For the minimal model, without x, the maximum value of the log-likelihood
function is l(π̃,y) = −30.9032. For the model with x, the corresponding value
is l(π̂,y) = −25.5087. Therefore, from Section 7.5, C = 10.789, which is
highly significant compared with χ2(1), showing that the slope parameter is
non-zero. Also pseudo R2 = 0.17 which suggests the model does not predict
the outcomes for individuals particularly well even though the residuals for
all the covariate patterns are small and the other summary measures suggest
the fit is good.

These data illustrate the differences between fitting the model to binary
(ungrouped) and Binomial (grouped) data. The relevant Stata commands are

Stata code (binary model)
.glm s x, family(binomial 1) link(logit)

and
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Table 7.10 Hosmer–Lemeshow test for data in Table 7.9: observed frequencies (o)
and expected frequencies (e) for numbers of people with or without symptoms, grouped
by values of π̂.

Values of π̂ ≤ 0.107 0.108–0.303 > 0.303

Corresponding values of x 14–20 10–13 4–9

Number of people o 2 3 9
with symptoms e 1.335 4.479 8.186

Number of people o 16 17 7
without symptoms e 16.665 15.521 7.814

Total number of people 18 20 16

Stata code (Binomial model)
.gen n=1

.collapse (sum) n s, by(x)

.glm s x, family(binomial n) link(logit)

For R the function for the ungrouped data is

R code (binary model)
>res.glm=glm(s~x, family=binomial(link="logit"))

For grouped data a matrix of columns of “successes” and “failures” has to be
constructed, then the function is

R code (Binomial model)
>res.glm=glm(waisgrp.mat~x, family=binomial(link="logit"))

For either form of the data the values of the estimates and their standard
errors are the same, but the measures of goodness of fit differ as shown in
Table 7.11. In this table M0 refers to a model with only a constant (i.e., no
effect of WAIS scores x), M1 refers to the model with a constant and an
effect of x, and MS refers to the saturated model with a parameter for every
observation. The statistics pseudo R2 and AIC can be interpreted to indicate
that the model M1 is better able to predict the group outcomes (i.e., event
rates) than to predict individual outcomes. However, the differences caused
by the form in which the data are analyzed indicate that caution is needed
when assessing adequacy of logistic regression models using these measures.

7.9 Exercises

7.1 The number of deaths from leukemia and other cancers among survivors
of the Hiroshima atom bomb are shown in Table 7.12, classified by the
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Table 7.11 Measures of goodness of fit for models for data in Table 7.9 obtained
using ungrouped and grouped observations.

Ungrouped Grouped
Number of observations 54 17
M0 log-likelihood −30.90316 −17.29040
M1 log-likelihood −25.50869 −11.89593

MS log-likelihood 0.0 −7.18645
M0 deviance 61.80632 20.20791
M1 deviance 51.01738 9.14897
M0 − M1 deviance 10.7889 10.7889
M1 pseudo R2 0.1746 0.3120

M1 AIC 55.0173 27.7919

M1 AICStata 1.01884 1.6348

radiation dose received. The data refer to deaths during the period 1950–
1959 among survivors who were aged 25 to 64 years in 1950 (from data
set 13 of Cox and Snell 1981, attributed to Otake 1979).

(a) Obtain a suitable model to describe the dose–response relationship
between radiation and the proportional cancer mortality rates for
leukemia.

(b) Examine how well the model describes the data.

(c) Interpret the results.

Table 7.12 Deaths from leukemia and other cancers classified by radiation dose re-
ceived from the Hiroshima atomic bomb.

Radiation dose (rads)
Deaths 0 1–9 10–49 50–99 100–199 200+

Leukemia 13 5 5 3 4 18
Other cancers 378 200 151 47 31 33

Total cancers 391 205 156 50 35 51

7.2 Odds ratios. Consider a 2×2 contingency table from a prospective study
in which people who were or were not exposed to some pollutant are
followed up and, after several years, categorized according to the presence
or absence of a disease. Table 7.13 shows the probabilities for each cell.
The odds of disease for either exposure group is Oi = πi/(1 − πi), for
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i = 1, 2, and so the odds ratio

φ =
O1

O2
=

π1(1 − π2)

π2(1 − π1)

is a measure of the relative likelihood of disease for the exposed and not
exposed groups.

Table 7.13 2×2 table for a prospective study of exposure and disease outcome.

Diseased Not diseased

Exposed π1 1 − π1

Not exposed π2 1 − π2

(a) For the simple logistic model πi = eβi/(1 + eβi), show that if there
is no difference between the exposed and not exposed groups (i.e.,
β1 = β2), then φ = 1.

(b) Consider J 2 × 2 tables like Table 7.13, one for each level xj of a
factor, such as age group, with j = 1, . . . , J . For the logistic model

πij =
exp(αi + βixj)

1 + exp(αi + βixj)
, i = 1, 2, j = 1, . . . , J.

Show that log φ is constant over all tables if β1 = β2 (McKinlay 1978).

7.3 Tables 7.14 and 7.15 show the survival 50 years after graduation of men
and women who graduated each year from 1938 to 1947 from various
Faculties of the University of Adelaide (data compiled by J.A. Keats).
The columns labelled S contain the number of graduates who survived
and the columns labelled T contain the total number of graduates. There
were insufficient women graduates from the Faculties of Medicine and
Engineering to warrant analysis.

(a) Are the proportions of graduates who survived for 50 years after grad-
uation the same all years of graduation?

(b) Are the proportions of male graduates who survived for 50 years after
graduation the same for all Faculties?

(c) Are the proportions of female graduates who survived for 50 years
after graduation the same for Arts and Science?

(d) Is the difference between men and women in the proportion of grad-
uates who survived for 50 years after graduation the same for Arts
and Science?

7.4 Let l(bmin) denote the maximum value of the log-likelihood function for
the minimal model with linear predictor xT β = β1, and let l(b) be the
corresponding value for a more general model xT β = β1 + β2x1 + . . . +
βpxp−1.
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Table 7.14 Fifty years survival for men after graduation from the University of Ade-
laide.

Year Faculty
of Medicine Arts Science Engineering

graduation S T S T S T S T

1938 18 22 16 30 9 14 10 16
1939 16 23 13 22 9 12 7 11
1940 7 17 11 25 12 19 12 15
1941 12 25 12 14 12 15 8 9
1942 24 50 8 12 20 28 5 7
1943 16 21 11 20 16 21 1 2
1944 22 32 4 10 25 31 16 22
1945 12 14 4 12 32 38 19 25
1946 22 34 4 5
1947 28 37 13 23 25 31 25 35
Total 177 275 92 168 164 214 100 139

Table 7.15 Fifty years survival for women after graduation from the University of
Adelaide.

Year Faculty
of Arts Science

graduation S T S T

1938 14 19 1 1
1939 11 16 4 4
1940 15 18 6 7
1941 15 21 3 3
1942 8 9 4 4
1943 13 13 8 9
1944 18 22 5 5
1945 18 22 16 17
1946 1 1 1 1
1947 13 16 10 10
Total 126 157 58 61

(a) Show that the likelihood ratio chi-squared statistic is

C = 2 [l(b) − l(bmin)] = D0 − D1,

where D0 is the deviance for the minimal model and D1 is the de-
viance for the more general model.

(b) Deduce that if β2 = . . . = βp = 0, then C has the central chi-squared
distribution with (p − 1) degrees of freedom.
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7.5 Let Yi be the number of successes in ni trials with

Yi ∼ Bin(ni, πi),

where the probabilities πi have a Beta distribution

πi ∼ Be(α, β).

The probability density function for the beta distribution is f(x; α, β) =
xα−1(1 − x)(β−1)/B(α, β) for x in [0, 1], α > 0, β > 0 and the beta
function B(α, β) defining the normalizing constant required to ensure that∫ 1

0
f(x; α, β)dx = 1. It can be shown that E(X) = α/(α+β) and var(X) =

αβ/[(α + β)2(α + β + 1)]. Let θ = α/(α + β), and hence, show that

(a) E(πi) = θ

(b) var(πi) = θ(1 − θ)/(α + β + 1) = φθ(1 − θ)

(c) E(Yi) = niθ

(d) var(Yi) = niθ(1 − θ)[1 + (ni − 1)φ] so that var(Yi) is larger than the
Binomial variance (unless ni = 1 or φ = 0).


